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ABSTRACT
" an approach to multivariate interpolation is described. The algorithm is
applicable in arbitrary dimensions, and can generate surfaces of arbitrary
smoothness. This is accomplished by tesselating the (polyhedral) domain into
simplices and using one dimensional algorithms to construct interpolants first
on edges and then successively on higher order faces by blending methods. The
result is a piecewise rational function of a high degree which has the
prescribed global smoothness and interpolates to the original data. The
interpolants are local, i.e. their evaluation at a point requires only data on
the simplex that the point resides in. The schemes require data of the same
degree as the degree of global smoothness. The degree of polynomial precision

is greater than or equal to the degree of smoothness. The approach derives

H

its power and simplicity from the fact that derivatives in directions
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perpendicularly across faces are incorporated directly as data. . -
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An apprcach is described to the interpolation of data in arbitrarily many

variables. The schemes are of arbitrary smoothness and require data of the
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same degree as the degree of smoothness. The domain is assumed to be

~

2 e

S

tesselated into simplices (e.g. triangulated in the case of two variables).

Evaluation at a point requires only data on the simplex that the point resides
in. The methods described here constitute the only known local interpolation
schemes in arbitrarily many variables and with an arbitrary degree of smooth-

ness.
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‘f Y 1. Introduction
% -
{:\. The problem of interpolating to scattered multivariate data is becoming increasingly
MO ]
H important. Applications include the modeling of physical phenomena involving space and
- time (e.g. combustion, temperature, pressure, etc.) and the design of geometric objects
v .
~e

’*}‘ (e.g. the body of a car or an aircraft). For a recent survey of this area see Barnhill,
~ -4

S 19e3.

In this paper, we describe an approach to multivariate interpolation in an arbitrary

e
5%

4

number of varjiables, and with an arbitrary degree of smoothness. We assume that the domain

(54
Rl

Ay 4y 4y 4 ‘
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of interest has been tesselated into simplices, and that at the data points we are given

‘A

“

the values of all partial derivatives through the same order as the degree of smoothness.
Any other directional derivatives can then be constructed from the partial derivatives. We
do not address the question of how the tesselation may be accomplished, or how higher order

data may be generated from lower order data. For some answers to these questions see

Barnhill and Little, 1983, or Alfeld, 1984a.

;ij{ Our interpolants are piecewise rational functions of the prescribed smoothness that

1.- !'-

{{f. . interpolate to the given data. The basic idea consists of constructing the interpolant on
\f} an individual simplex as a hlend of lower dimensional interpolants on faces of the

simplex. Recursion of this procedure ultimately leads to one dimensional problems which

S are easy to solve.
R‘\Q.
:}i: The interpolants derive their power and simplicity from the fact that derivatives in
P
W~
318 directions perpendicular to faces of a simplex are incorporated directly as data. Such
-
TR derivatives govern the smoothness of the interpolants between simplices. 1If derivatives in
‘- ..-
. ™
- other directions, e.g. parallel to edges, are used, then an algebraic link to perpendicular
o
H \'.
S
W .
; Department of Mathematics, University of Utah, Salt Lake City, UT 84112,
.)25 Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the Department
k of Energy under Contract No. DE-AL02~82ER12046 A000.
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derivatives has to be constructed. This leads to extremely complex algebraic manipulations
that, moreover, at the present state of the art, cannot be carried out for a general degree
of smoothness and a general number of variables. The central role of perpendicular
derivatives gave rise to the title of this paper.

The schemes proposed here are local, i.e. their evaluation at a point requires only
data on the simplex that the point resides in. In two variables there are many local c!

2

and C schemes (see Barnhill, 1983, and the references therein). There are very few

local trivariate c! schemes (see Alfeld, 1984, and Barnhill and Little, 1983) and no

alternative C2

schemes. The methods proposed here are the only existing local schemes
for scattered data in an arbitrary number of variables and with an arbitrary degree of
smoothness.

The paper is organized as follows: In section 2, we develop some geometric concepts
and notation. In section 3, we described two types of perpendicular interpolants. In

section 4, some formulas are given that are useful for the implementation of bi- and tri-

variate schemes; and section 5 contains (trivariate) numerical examples and comparisons.

2. The Geometry of Perpendicular Interpolants
We shall be ultimately concerned with polyhedral regions in R® that have been
tesselated into n~dimensional simplices. Any such simplex is defined by its vertices which

we denote by V,, Voreas,V A general point x @ R® is described in terms of

n+1*

barycentric coordinates b,,...,bn+, as

n+1 n+1
x = 1£1 bV, where 121 b, =1 . (2.1)
We will always assume that the general simplex is non-degenerate, i.e. that the linear
system (2.1) possesses a unique solution.
Most of the gsequel will be concerned with the development of the interpolants as they

are defined in the context of a single simplex. It will be convenient to think of the

simplex as the affine space spanned by the vertices. We define

n+1 n+1
s:={x|x= Y bv,, ) b =1 (2.2)
e A AL Mt
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bound(s) := {x es | gi e {1,2,...,n+1} : b, = o} . (2.3)

When we need to refer to the simplex as the convex hull of its vertices we will use

the notation

n+1 n
conv(S) = {x = ) b,V 'Y »y =% b >0 i=1,...,0) .
i=1 i=1

We will denote by F that n-1 dimensional face of S that is obtained by removing
the vertex Vi« F is itself a simplex and the notations bound (F) and conv (F) apply.
The set of all facets of S of dimension 1y, say, is denoted by Fu, and the set of all

facets is F.

The anchor of F is that face of S whose normal forms the smallest angle with the
normal of F. With the point x and the face F we associate the straight line through

x perpendicular to F. That line is the line of fixation of x with respect to F. F

is also called the base face of the line of fixation. The point BF(x) where the line of
fixation intersects its base face is the base point of x and the point Ap(x) where it
intersects the anchor is the top point of x (all with respect to the base face).

Before going into algebraic details in section 3 it is useful to visualize perpendicu-
lar interpolants geometrically. Consider a fixed point x and a fixed simplex S. 1In
unanchored interpolants, we interpolate along all lines of fixation through x to all
derivatives through given order at the base points. The final value of the interpolant is
obtained by suitably blending the values of the univariate interpolants defined on the
lines of fixation. In anchored interpolants, we interpolate additionally to function (but
no derivative) values at the top points of x.

Note that perpendicular interpolants require data on the faces of S. These are in
turn defined in terms of lower dimensional interpolants, giving rise to the recursive
structure of perpendicular interpolants. It is possible that the top point of the line of
fixation lies outside the convex hull of the points defining the anchor, necessitating

extrapolation. This is why in definition (2.2) and (2.3) we do not restrict ourselves to

“y %9 "2
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the convex hull of {vi}' In the presence of obtuse angles extrapolation may also be

necessary in the base face.

The above geometric concepts are illustrated in Fiqures 1 and 2 for the case that
n = 2. In section 4 on computational aspects algebraic expressions are given for n = 2

and n = 3,

3. The Interpolants
3.1. Unanchored Interpolants

We shall construct operators Pg which associate to each f a function ng ec™
which interpolates f and its derivatives of order < m at the vertices of S.
Actually ng only depends on the values of f and its derivative values at the vertices
and hence in actuality is defined for each set of discrete data. However, it is convenient
to think of PG as operating on functions. If Pg is applied piecewise on a tesselation
of a polyhedral domain D into simplices, then the resulting piecewise defined function is
in ™).

Now the operator Pg is built up from the lower dimensional operators P§ where F

is any face of S of dimension n - 1 and 0 € k.< m. In this way, the operators Pg
are defined recursively starting with simplices of dimension 0 (the vertices) and working

up to higher dimensional simplices.

The operator Pg is gotten by blending the lower dimensional operators P;.

Suppose Vi is a vertex of S and F 1is the n - 1 dimensional face of S which does

not contain Vye For any point x as in (2.1) which is not in bound (S) we define

bn(m)
r

(3.1)

l m bn(m)
=t r#3 ¥
m+2 if m is even

where nm) = {0 Vo 1 e cdd .

The exponents of the barycentric coordinates br are chosen to be even so that the

>, 7 blending functions c® constitute a nonnegative partition of unity even if some bary-
F g

-4-
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centric coordinates are negative. This is necessary because as pointed out in section 2
some extrapolation on faces of S may be necessary.

We do not define c; for points in bound(S); however, since b1 =0 on F, cg is to
be thought of as a function which i3 1 on F and 0 on the other faces of S. For

such a face F we also introduce the operators Gg defined by

\Y
m b v
m i _m-v,/3 f
GLlE)(x) == ) =Pl () (B (x)) (3.2)
v=0 asF

where the P§ are the lower dimensional operators, and, as introduced earlier, Bp(X) is
the base point of x and sp is the normal to F, normalized to have length equal to the
distance from Vi to F. Note that the operator Gg extends data on F by Taylor
interpolation in the direction perpendicular to F, hence the name perpendicular

interpolation.

Then, for n = dim(S) > 1, and m > 0, the operators Pg are defined by

[ cp0Gp(f)(x)  x ¢ bound(s)

. FeF
B = (T (3.3)
P_(£)(x) xeFeF .
F n-1

We shall see shortly that Pg(f)(x) is well defined on bound(S). Before doing this,

however, we must define Pg if dim(S) < 1 or m = 0. This is accomplished by

0 n+1 n+1t
P_(f) () bv):= ) b £(V,) (3.4)
s P ! i
and
aim(s) = 0 ==> P:(f)(x) = £(V) (s = {v}) (3.5)
aim(s) = 1 ==>
m j 3
m m - f m 3 f R
P E)(EV, + (1-t)V ) := ) thg, (8 Tovmv T Ve * 0058 Ty vy (YRl (3.6)
3=0 27" 271
. -7-
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where S is spanned by VvV, and v, and the h?,j are cardinal polynomials of degree

2m + 1 that satisfy and are defined uniquely by the properties

T (v)
i,s

u 6susik
Ix
t=k

s,u=20,1...,m i,k = 0,1, and § the Kronecker delta.

Thus (3.4) describes multivariate linear interpolation and (3.6) univariate Hermite
Interpolation of degree 2m + 1.

We turn now to the smoothness of ng. ig clear that ng ig infinitely often
differentiable at all points of S which a wt in bound(S). To study ng on bound(s)

we need the following lemma:

Lemma. The blending functions c? have the following properties:
1. For any differentiation operator ) of order %, 1< £ ¢ m, and any xg € bound(s)

1im oc“;,(x) =0 .

x->x°

xgbound (S)
2, with G= {F | X, € F} £ ¢
lim ) c;‘(x) =1 .
XX, FeG
xbbound(s)

Proof: The lemma is proved by inspection.

We now come to the fundamental theorem of this section:
Theorem 1:

The operator P@ has the properties:

(1) ng is well defined for each f.

(i1) sz e ™ for each f.

-8-
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(iii) For any Xy € F e Fn-1 and any differential operator D of order £ < m involving
only directions contained in sS:

m m-k
DPs(f)(xo) =P (Uf)(xo) .

Proof: The theorem is proved by induction on dim(sS). The statements are clear from the
definition (3.6) of P: if dim (s) = 1. Now suppose we have established the theorem for
all simplices of dimension n - 1 and let S be a simplex of dimension n.

Consider first statement (i). If x3 € bound(s) and x, € F 0 F' for two faces F
and F' of S then X, € G with G a facet of dimension n - 2 contained in both F
and F'. But then P?(f)(xo) := Pg(f)(xy) and similarly for F' by the induction
hypothesis. This establishes (i).

Now consider (iii) and suppose F € Fn_1 a fixed face of S. Without loss of
generality we may assume that D has been written as the sum of operators of the form

Dpl where DF is of order j involving only derivatives in directions contained in

k
F and D = 3—% with Sp the normal to F and j+k = £ < m. We first observe that
BsF
m-£
lim D(GFf)(x)=PF (DE)(xg) . (3.7)
x*x
0
x@F
-V
Indeed, DFbi = 0, and D(bi) =0 at x0 unless VvV = k (in which case

ﬁ(b:) = k!). Hence, from our induction hypothesis

v

mo_by m-v 3°f
lim DG _£)(x) = 1im ) (D(=0)){D P (=) (B_(x)))
F v! F F v F
xX*X x+x . V=1 3s
0 0 F
x¢F x¢F
k
m-k 3 f
= lim D (py (=50 ) (BL(x)) ]
padd s ~
0 F .
x¢F R
X Y
_ m-2 3 f
= Py (D, 0 (BL(xy)) }
BsF

e

m~L
= PF (Df)(xo) .




k
The letter equality holds hecause DF 2—{-- Df and BF(xo) = Xge This shows (3.7).
asF
From (3.7) we can conclude that under the same hypotheses

m m=2
lim D(Psf)(x) =P, (Uf)(xo) . (3.8)
x*xo

x¢F

To see this, we first observe that as in the proof of (i), the right hand side in (3.8) is
well defined if Xg lies in two different n - 1 dimensional faces of S. Let us denote
by L the common value of P@T‘(Df)(xo) for all faces F' that contain Xg. Using the

Lemma and (3.7) we have

lim  D(Pe)(x) = lim () o)L =1L . (3.9)
X+x x+x F
0 0 eF
xébound(s) *o

The last equality holds because in the limit all derivatives of all cg. and all
cg with x4 é F vanish, rendering the sum in (3.9) equal to 1, and because the G:f(x)
are continuous and hence bounded in a neighborhood of xy. This establishes (1iii).

The statement (ii) now follows by induction on the degree £ < m of a differentiation

operator. Let x, € bound(S). In the proof of (iii) we have seen that 1lim P:f(x) is

x+x
0
well-defined and assumes the value required in (3.3). It is hence continuous. Now assume
2-
P: ec 1(S), L <m and D is a differentiation operator of degree £. Then

-1 m
lim DP;f(x) is again well defined. Since Prec  (s), DPS is continuous. This

0 S
*o
egtablishes (ii) and completes the proof of the theorem.

The properties of interpolation and global smoothness of piecewise applied unanchored

interpolants follow immediately from Theorem 1.

Corollary: Assume a polyhedral reqion D has been tesselated into simplices and let
PME)(x) = Pg(f)(x) whenever x € conv(S). Then P™f is well defined, P-"f @ Cm(D),
and for all vertices V and differential operators D of order k < m

D(P™EY (V) =DE(V) .

-10-




Proof: Nothing needs to be shown in the interior of a simplex. So let F be a -
common iacet of two gimplices S and S'. Then by a possibly repeated application of
Theorem 1 (iii), .

DP‘;f,F = pkpr = pPS.f . (3.10)

Hence P™f and its derivatives are well defi,ed. Its smoothness follows as in the proof !

of theorem 1 (ii). Interpolation follows from (3.10) and the definition (3.5).

We now turn to the question of polynomial precision.

Py SV

Theorem 2: Let f be any polynomial in n variables of degree < m, and let a4
be defined as in the corollary of Theorem 1. Then
Pra=r .

Proof: It is sufficient to consider only an individual simplex S. If m = 0, the
operator P: even reproduces linear functions which are of degree m + 1. For m > 0,
the proof is again by induction on dim (S). The statement is clear from the definition
(3.6) if Aim (S) = 1 since univarjate Hermite Interpolation reproduces polynomials of
degree up to 2m + 1. This follows from the existence and uniqueness of the interpolant
which is shown e.g. in Davis, 1975, p. 29.

Now suppose we have established the theorem for all simplices of dimension n - 1 and
let S be a simplex of dimension n. Let f be a polynomial of degree < m. Then £

reduces to a univariate polynomial of degree < m along any line of fixation. It follows

that for any face F of S the operator G? reproduces f exactly because by (3.2)
s just applies Taylor interpolation to data on F which are exact by the induction

F
hypothesis. The theorem now follows from (3.3) since the cg constitute a partition of

unity.
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3.2 Anchored Interpolants

In this subsection, we increase the degree of precision of unanchored interpolants by
also interpolating to function (but no derivative) values at the top point of the line of
fixation. It is infeasible to interpolate to derivatives at the top point since the
direction of interpolation is not perpendicular to the anchor. The necessary changes in
the interpolant consist of the addition of another term in the definition of the face
operators and a modification of the cardinal functions. The notation is essentially the
same as that for unanchored interpolants, except that differing objects have been

distinguished by bars. We define

-m -m -m=-v,9 f
Gplx) = ] P, (by,t.) Py (—v)(BF(x))
V=0 3s
-m -om
+ pm+1(bl~"t1=') PA(f.)(TF(x))

where A is the anchor of F, Tp(x) is the top point of the line of fixation with respect
to F through x, and BF(x) and sp are as before. The quantities bF and tF are
defined by

bF = fyx = BF(x)I2

and

tF = Ix - 'I‘F(x)l2

R
;:_ and the ;t replace the Taylor polynomials. They are polynomials of degree m + 1
AT
:,: defined by the cardinal properties
A
oS 3T pb,t) £ =0,1,00.,m

v

—_— = §
ap" b=0 ¥ v =10,1,...,m1
m -
and pt(t,t) 6:,m+1 r=20,1.c0,m+1

Explicitly they are given by

\4

m b
p,(b,t) =<~ (1-¢

b

v

)m-\)+1 )

“»
.
[ N L e

-12-
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m = (2ot
pm1(b,t) (t) .
_. Thus the operator E: extends data on F and its anchor by univariate interpolation along
‘:_ the line of fixation.
«
: -m
The operators Ps are now defined analogously to P: by

sl
Y

AES m. sm

YN L e (x)G (£)(x) x ¢ bound(Ss)

AR F F

vy - Fe Fn-1

) Ps(f)(x) 1= -

PL(£) (x) xerefF .

A Y

. if aim (S) > 1 and m > 0, and

)
AN om - B =0 - p?

N Ps(x) Ps(x). Ps(x) Ps(x)

oy

. otherwise.

s

oy The following theorem is analogous to Theorem 1:

.

-

S, Theorem 3:

-'. “
( R The operator Ps has the properties

v (1) Fgf is well defined for each f

:r: . (11) ;:f e cm for each F

Ao

";- (iii) Por any x5 € Fe F _, and any differential operator D of order £ < m

involving only directions contained in S:

‘ o e X 0e) 2
re Ps( (xo) = PF ( (xo) . "“:
- ]
o ]

» Proof: The proof of Theorem is like that of Theorem 1. The only difference is that :-‘4
.. the E:(f) differ from the G:(t) on faces other than F. However, all that is required q
AN -
e is the boundedness of E‘:(f)(x) as x approaches a point in a face other than F. This, ©
e -m ~
O however, follows from the continuity of Gp(f ). .-
» —
" . Global Smoothness and interpolation follows as for Theorem 1:
.
N

-]13=-

’-' t'n'. .l“.i ’

o
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Corollary: Assume a polyhedral reqion D has been tesselated into simplices and let
—m
P (£f)(x) = ;:(f)(x) whenever x € conv(€). Then ;mf is well defined, P e Cm(D). and
for all vertices V and differential operators U of order k & m

DET£)(V) = DEC(V) .

The advantage of anchored interpolants is that the degree of polynomial precision is

increased without raising the degree of the required data:

Theorem 4: Let f be any polynomial in n variables of degree < m+1, and let
;mf be defined as in the corollary of Theorem 3. Then

e =f .

The proof of theorem 4 is analogous to that of theorem 2.

4. Implementation of Interpolants in Two or Three Variables
In this section, we develop algebraic representations of the geometric concepts
introcduced in the preceding sections. We restrict our attention to two or three

variables. An edge of a simplex will be denoted by ej4 = vy - vj.

4.1 Two Variables
In this case, the generic simplex § is a triangle, and its faces are edges. The
anchor A of the base face e 1is that edge other than e that maximizes the expression

Ta

e
lcos of = Vel 1AV

2

where o is the angle formed by e and A. In the case of an isosceles triangle, the
resulting tie may be broken arbitrarily, but this must be done consistently. Some care may
be necessary to avoid different assignments of the anchor at different stages of the

computation due to round-off errors.

-14-
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k.

The normal ¢ to the base face is expressed in the form

$ = eij + Yejk where
e'r e
0Te, =0 i.e. ya=--233k
I e..e
Ik 3k

A general point x is written in terms of barycentric coordinates as

X = DbVi 4+ byVy + bV, by + by + by = 1 .

b
parameter along ¢, i.e. === 1. We obtain

X =B + bib, B = ajvj + aka .
where ay = bj + (1-Y)bi, a =1~ aj, and
T = °1V1 + cjvj where

cy = ;E and cj = 1-c1 .

4.2, Three Variables

and vl' The normal to the hase face is written as

[ eij + “ejk

where a and R are defined by the linear system

T T
[ ejk =9 ekz 0 .

+ Bekl

A A . & a
A

0
-

!
»

o« .t
s e .

R A NPT o L
b N e L e

actually occuring situation can be described by assigning suitable values to

To maintain generality we consider a general triangle S with vertices Vie V

i, 3.

bJ

’ vkl

where ejk is the base face and €5 is its anchor, as depicted in Figures 1 and 2. Any

and

(4.1)

Let B denote the base point of the line of fixation through x, and let T denote

its top point. With the normalization implied by (4.1) we have that b; is the natural

Note that always Y # 0 because the choice of the anchor avoids right angles o.

We now repeat this development for the case of three variables and consider a general

tetrahedron § with vertices Vi vj, Vs vl where the base face is spanned by Vj, Vieo

k

P

Dadadelo B

uER e,

bt sintakeknli St ot &
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’

Explicit expressions for a and B are given by: :
-l

T T T T ]

o m o %19%0 7 % ®in®19 %9k v

eT e eT e - (eT e )2 -

jk 3k k& ki Jk ki .

and
eT e eT e, - eT e eT e i

g = ik k£ i 4k jk k13 k£ )

eT e eT e - (eT e )2 ) g

jk Ik k& ki Ik k& R

The anchor of the base face is that face other than the bage face whose normal q,

caltala

say, maximizes the expression

°'1‘
101 1ql

2
A general point x is now written as

X = bivi + ijj + bkvk + blV2

where

b1+bj+bk+bl.1 .

Again we denote the base point by B and the top point by T. We obtain

B = ljvj + akvk + alvl .

where

‘j = bj + (1-a)bi

a = bk + (a-B)bi
als 1 -aj -ak

and, assuming the anchor is spanned by Vi vj, Vi

45'

AU
e "l ‘n 4

T = clvi + chj + cka

!

where
N}
i 8 4
c, = a, + (a=1)c
g7 8t (amhey
c, =1~ ¢ - cj .
-16~
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5. Computational Aspects and Numerical Results
S5.1. Computational Aspects

We have implemented all the schemes described in this paper into PORTRAN research
codes. A major tool in constructing the codes was the symbol manipulation language REDUCE
(Hearn, 1983), which can be instructed to write mathematical formulas directly in FORTRAN
notation. We have examined all interpolants using the smoothness tester MICROSBCOPE (Alfeld
and Harris, 1984). This investigation confirmed that the codes do indeed possess the

smoothness and precision properties implied by the mathematical construction.

5.2. Numerical Results

In this section, we compare several trivariate schemes on a simple problem. The
domain is a distorted cube that has been tesselated into 12 tetrahedra. The tesselation is
described in detail in Alfeld, 1984b. The guiding principle behind the construction of the
domain was to avoid artifacts due to e.g. edges or faces being parallel to coordinate axes,
etc.

For ease of comparison an underlying function was used. This was given by

PF(x,y,z) = Jrz-xz-yz-zz (5.1)

for several values of r. The derivative data required for the schemes were exact. The
distance of the vertices of the domain from the origin varied between 18.71 and 187.6.

For comparison, we also include transfinite variants of our interpolants, i.e.,
schemes vhere the data on faces are given exactly rather than being defined by lower
dimensional interpolants. Thus W and ;F denote the transfinite interpolants

corresponding to P and ;n' respectively.

Table 1 contains the numerical results. The interpolation schemes are ordered by
increasing complexity as defined by the amount of CPU time (on the DEC System 20 of the
\; College of Science at the University of Utah) required for one evaluation of the

Ei interpolant. The individual schemes were not programmed in the most efficient fashion
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possible, but their implementations are sufficiently similar such that the comparison is
valid. The following is a more detailed description of the table by columns:

1. (Scheme) Short notation for the scheme. For most of the scheme the notation is
defined in this paper, but the schemes defined in Alfeld, 1984b are included for
comparison.

2. {(piscrete versus Transfinite) Indicates whether the scheme is a transfinite or a
discrete one.

3. (Anchor) 1Indicates whether the scheme is anchored or not. N. A, mzans that the

scheme is not based on perpendicular interpolation so that this distinction does not apply.

4. (Precision) All (trivariate) polynomial of degree up to the given number are
reproduced exactly by the scheme.

S. (Smoothness) All derivatives through the given order are continuous.

6. (r) The value of r in (5.1).

7. (Error) The maximum relative error (computed over the entire distorted cube).
This quantity was computed by searching in each tetrahedron with Winfields Method
{winfield, 1973) starting at the centroid of the tetrahedrom. This algorithm identifies
local maxima. Hence there is a slim possibility that the overall global maximum was
overlooked by the method. However, this is an unlikely occurrence because on each tetra-
hedron the primitive function (although not the relative error) is uniformly convex.

8. (CPU) The CPU time in milliseconds for one evaluation of the interpolant (not
including the setting up of the relevant data structure).

9. (COMM.) Comments:

(1) This is the standard linear interpolant that is included here for comparison.

(2) This is the transfinite scheme described in Alfeld, 1984b. It is also included
for comparison.

{(3) Here the necessary extrapolation on the anchor caused an evaluation of the
primitive function outside of its domain where x2 + yz + z2 > r2. The computing system

proceeded by replacing negative radicands by their absolute values.
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(4) This is the discrete interpolant described in Alfeld, 1984b. It is also included ;

for comparison. o
-

The following points emerge from the table:
1. Most schemes give reasonable results, considering that a large part of the domain of
the primitive function is covered by only 12 tetrahedra.
2. The discrete schemes are significantly more complex than the transfinite schemes. The
only exception to this is the very simple linear interpolation scheme, which yields a
surface that is only continuous.
3. The discrete anchored c1 interpolant ;1 is much more efficient than its competitor
described in Alfeld, 1984b which has very similar properties. Indeed, an attempt was made
to construct a c2 scheme along the lines described in that paper. This attempt failed
for purely practical reasons, the C2 scheme was simply too complex for all practical
purposes. Since the smoothness and precision of the C1 schemes are identical, and the
maximum relative errors are very similar, this demonstrates the superiority of the
perpendicular interpolation approach described in this paper.
4. As one would expect, the discretization of a transfinite scheme increases the error
substantially. This is a price that simply has to be paid in a practical application since
transfinite data will usually not be available.

5. The accuracy also deteriorates as the radius of the domain decreases and the boundary

of the domain approaches the outmost point of the tesselation.

2 1

6. The gain in accuracy due to employing a C rather than a C scheme is surprisingly

small.
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1 2 3 4 5 6 7 8 9 4
DISCRETE e
SCHEME versus ANCHOR PRECISION SMOOTHNESS r  ERROR CPU  COMM. 3
TRANSFINITE .;{
e
0 200  2.1E-1 (N ey
P Discr. both 1 0 300 4.0E-2 4.9 o
400 1.9e-2 ,1
200  7.9-3 e
w! Trnsf. no 1 1 300 2.4E-3 8.7 o
400  1.2E-3 -
3
- 200 3.3E-3 s
Trnsf. yes 2 1 300 1.1E-4 10.1
400  2.6E-5 -
200 6.7E-4 e
BBG Trnsf. N.A. 2 1 300 3.2e-5  10.3  (2) B
400 6.8E-6 '
200 2.5E-4 3
w? Trnsef. no 2 2 300 2.8E-5  12.3 -
400 7.5E-6 N
- 200  6.4E-4 (3) -7
Trnsf. yes 3 2 300 1.0B-5 16. 1 n ]
400 2.1E-6 -
-—d
; 200  1.2E-1 .
P Discr. no 1 1 300 9.7E-3 18.4 ]
400  4.4E-3 .
- 200 8.7E-2 P
Discr. yes 2 1 300 1.4E-3 44.2 -
400  2.8E-4
200 1.3E-1 (3)
P? Discr. no 2 2 300 6.4E-4  65.8 "
400 1.2E-4 e
, 200 9.9E-2 (3) e
P Discr. yes 3 2 300 3.9E-4 142.5 :j

400  1.1E-4
200 8.4E-2 e

BBG Discr. N.A. 2 1 300 1.4E-3  280.3  (4) -
400 2.6E-4 A

Table 1: Numerical Results

> L
v e
Dy X
. g
) :
t:': -20-
1) .
. -
¥~ -
. RS
E‘ o
“~ -:




TR

Acknowledgements

The author was benefited from discussions with Ron DeVore which greatly improved the

presentation of this paper and led to a deeper understanding of perpendicular interpolants.

T T TV Y

P "n /
2as '.ﬁ

.
.

selae
R

)
L

ksl ool I B foninass

)
.
.
)
A

[
:

AN

L :
- ;
.-: 2. K
. 3
s y

= -21-

-5413
LN

LN N
8 %
Te®
E

v
Y

T L B

€. . . - :
P T U SR S RN S NS
A N AR SN R SO A A AP




W —
RS i e S g e RO A N S AN e P S D Sy g A A |

o

REFERENCES i}

Peter Alfeld, 1984a, Scattered Data Derivative Generation by Functional Minimization. ]I
Submitted for publication. i
Peter Alfeld, 19A4b, A Discrete <:1 Interpolant for Tetrahedral Data, special issue of the _}
Rocky Mountain Journal of Mathematics, to appear January 1984. .!
Peter Alfeld and Bill Harris, 1984, MICROSCOPE: A Software Tool for the Analysis of ‘
Multivariate Functions, in preparation. i

R. E. Barnhill, 1983, A Survey of the Representation and Design of Surfaces, IEEE Computer iﬁ
Graphics and Applications, October 1983, pp. 9-16. '_]

R. E. Barnhill and F. F. Little, 1983, Three- and Four~Dimensional Surfaces, special issue '-j
of the Rocky Mountain Journal of Mathematics, to appear January 1984, .:

o

Philip J. Davis, 1975, Interpolation and Approximation, Dover Publication.

"

A. C. Hearn, 1983, REDUCE User's Manual, Version 3,0, The Rand Corporation, Santa Monica,

I' !’

.
A a4 4 4 4

CA 90406. -
D. winfield, 1973, Punction Minimization by Interpolation in a Data Table. JIMA 12, pp. J
339-347. ' .';
.:\'
[ )
L]
PA/jvs
s
L.. "
Y .'-j
e
-
R
r @2 )
7 -22-
P
A
-."*
.‘:‘.‘
s




[ )
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) ‘
- READ INSTRUCTIONS g
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM '
. REPORT NUMBER 2. GOVTY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
#2641 2«19:{_ ‘2 ) 54
4. VITILE (and Subtitle) M S. TYPE OF REPORT & PERIOD COVERED ;
Summary Report - no specific :
Multivariate Perpendicular Interpolation reporting perioc :
6. PERFORMING ORG. REPLRT NUMBER N
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
DE-AL02-82ER12046 A000 .1
Peter Alfeld DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. :222“&A205RLEMEINTT'NPROBJEESJ' TASK
. ™
Mathematics Research Center, University of Work Unit Number 3 =
610 Walnut Street Wisconsin | Numerical Analysis and
Madison, Wisconsin 53706 Scientific Computing
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
February 1984
See Item 18 below 3. NUMBER OF PAGES
22
. MONITORING AGENCY NAME & ADDRESS(/f ditferent from Controlling Office) 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
18a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, J{ different from Report) _:
=
..‘
9

18. SUPPLEMENTARY NOTES o

U. S. Army Research Office U. S. Department of Energy

P. 0. Box 12211 Washington, DC 20545

Research Triangle Park
North Carolina 27709
19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

RN D
P ‘A."_,, ,

Scattered Data, Multivariate Interpolation, Multivariate Approximation

'@ -
R iy S S SN

20. ABSTRACT (Continue on reverse side If necossery and identily by block number)
An approach to multivariate interpolation is described. The algorithm is

o applicable in arbitrary dimensions, and can generate surfaces of arbitrary smooth-
= ness. This is accomplished by tesselating the (polyhedral) domain into simplices ’1
o and using one dimensional algorithms to construct interpolants first on edges and 'ﬂ
L then successively on higher order faces by blending methods. The result is a R
e piecewise rational function of a high degree which has the prescribed global
e smoothness and interpolates to the original data. The interpolants are local,
. i.e. their evaluation at a point requires only data on the simplex that the

L! DD, on'ys 1473  E0ITION OF 1 NOV 65 1S ODSOLETE UNCIASSIFIED (continued) .j

SECURITY CLASSIFICATION OF THIS PAGE (Whaen Data Entered)

A -
_.'_.")‘ .. T N ST . s e L. . T .x' . - . .
Vo . . N -, Y - - e . P B L et . "D TN - . LN N
a at PR TO VO S PP TR ARV s e e e _..:‘{; _;1#':_ L o \‘_. ‘.:_ - c
rs A2 Y Sado s e a - - ™ o - B




14

.
[ e

ABSTRACT (continued)

point resides in. The schemes require data of the same degree as the degree
of global smoothness. The degree of polynomial precision is greater than or
equal to the degree of smoothness. The approach derives its power and
simplicity from the fact that derivatives in directions perpendicularly across
faces are incorporated directly as data.

&
- e

LA




2

A

T & i i

3

T el e M Saieh 4 e - oo

F- « DI R IO S S S P




